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Effects of scale and inertia on granular banding segregation

A. Alexander, F. J. Muzzio, T. Shinbrot

Abstract We report that the formation of much reported
axial segregation bands in rotating cylinders loaded with
different sized particles depends critically on scale and
inertia. Specifically, when the ratio, 6, of the diameter
of the cylinder to the average diameter of the particles
is large, axial bands invariably appear, when ¢ is small,
bands never appear, and between these extremes lies a
reversible state where the presence or absence of bands
depends on container rotation speed. Our results indicate
that banding is associated with a Rayleigh-like instability
of a granular core of fine particles, and that this instabil-
ity is controlled by the inertia of the larger species — and
consequently on scale.
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It has long been known that blends of different size parti-
cles segregate when agitated [1,2]. In a rotating drum, ‘ra-
dial’ segregation occurs promptly, characterized by small
particles forming a core along the axis of rotation and
large particles surrounding this core. Subsequently, axial
bands (see figure 1) of nearly pure components often form
[3]. Reports of axial ‘banding’ segregation abound in the
recent literature, and the topic has garnered much interest
both theoretically and experimentally [4-10]. Particularly
intriguing has been the work of Hill and Kakalios [10],
who identified blends that appear mixed at low rotation
speeds but form bands at higher speeds. In that work, it
was determined that differences in the dynamic angles of
repose (¢) of pure versus mixed phases dictated whether
or not bands form: when ¢ of the larger species and of the
mixed phase are similar, a banded state is suppressed, but
when these ¢ values differ, bands appear. In this letter, we
confirm the results of Ref. [10], but report that those out-
comes represent a subset of a broader picture in which the
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presence or absence of banding depends crucially on mean
particle and container size.

To investigate axial banding in greater breadth, we
performed experiments in clear acrylic cylinders of dif-
ferent inner diameters (approximately 2.5, 5, 6, 9.5, 12,
and 14.5 cm), all 30 cm in length and rotated at fixed
speeds under stepper motor control. In each experiment,
a cylinder is filled to 50% of capacity with an equal vol-
ume binary mixture of sieved spherical glass beads vary-
ing in size from 0.2 mm to 6 mm and dyed to provide
visual contrast. We restrict ourselves to mixtures for which
the particle size ratio, ®@, is less than 6.5: above ® = 6.5,
the interstices between large particles are wide enough to
allow spontaneous interparticle percolation [11,12] which,
though important, is not part of the present study.

Figure 1 shows the range of phenomena that occur as
particle diameters, cylinder diameters and rotation rates
are varied. For a given experimental condition (parti-
cle sizes, cylinder diameter, and rotation rate) only one
outcome prevails, either banded or what has historically
been described as ‘mixed’ (which more precisely is a radi-
ally segregated state without bands). As shown in Fig. 1,
changes in mean particle size, cylinder size or rotation rate
can each significantly alter the mixture behavior.

For a given mixture/cylinder pair, we define three
states of segregation behavior:

1. The contents are ‘mixed’ at both 10 rpm and 30 rpm,
2. The contents are ‘mixed’ at 10 rpm but are banded at
30 rpm (reversibility),
3. The contents are banded at both rotation rates.
Figure 2 shows our determinations of each of these
behaviors in over 100 separate experimental combinations
of mixtures and cylinders, alongside the results of Hill and
Kakalios [10]. In this figure, we see a consistent trend in
which there is a transition from an always banded state
through a reversible state to a never banded state as either
the average particle size is increased or the cylinder diame-
ter is decreased. These trends are codified in their simplest
form by the ratio, § = D/dgeg, of cylinder diameter, D,
to mean particle diameter, d,.4. As indicated by the lines
that partition Fig. 2, when § exceeds about 55, banding
segregation always occurs, when it is less than about 40,
banding segregation is never seen, and between these val-
ues the state is reversible with the presence of banding
depending on the cylinder rotation rate. The two rotation
rates used in Ref [10] were 5 and 15 rpm (whereas our
rotation speeds were 10 and 30 rpm), and the cylinder in
Ref. [10] was filled to 33% of capacity (as compared with
our experiments using 50% fill). The sizes and speeds used
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Fig. 1. Experimental outcomes of tumbling experiments using
different mean particle sizes and container diameters. In each
experiment, an equal volume pre-mixed binary blend of glass
beads is loaded into a cylinder that is rotating at constant
speed for 20 minutes. In case (a), 0.4 mm and 0.2 mm par-
ticles form axial bands when rotated at 10 rpm in a 2 cm
diameter cylinder; in (b), increasing the particle sizes to 0.8
mm and 0.4 mm results in a ‘mixed’ state in the same cylinder;
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Fig. 2. Banding data as a function of cylinder diameters
and average particle size. Each data point represents a sep-
arate experiment (circles always band, squares band revers-
ibly depending on rotation speed, and triangles never band).
Shaded regions are delineated by the ratio § = D/davg = 40
and 55 as indicated. Data from Hill and Kakalios [10] are iden-
tified by larger symbols

in our study are chosen to provide steady flow for all cyl-
inder and particle combinations, and the ranges of § for
each type of mixture behavior are consequently slightly
different between our data and those of Ref [10], however
the trend with changes in ¢ in both studies is as we report.

To understand the cause of the transition between
banding and non-banding states, we note that MRI re-
sults of Hill et al. [6] and of Nakagawa [13] show that in
the banded state, the core alternately swells and narrows
along its axis, leading to the proposition [6] that visible
bands are best be viewed as an extension to the surface

Increase
rotation
rate

in (c), increasing the cylinder diameter to 5 cm reverts to axial
band formation; in (d), increasing particle sizes to 1.6 mm and
0.8 mm once again represses bands; and in (e) and (f) either
increasing cylinder size to 6 cm or increasing the rotation rate
to 30 rpm restores axial bands. All snapshots are taken after
stopping the cylinder, and darker particles are larger in all but
snapshot (c)

of Rayleigh-like instabilities in the core shape [14]. This
instability is well known in fluid mechanical circles, where
surface tension in a cylindrical stream of water (e.g. flow
from a tap) causes the fluid stream to neck and break into
droplets.

We test this proposition in three ways, first by varying
the relative concentration of constituent particles, second
by altering their density contrast, and third by computa-
tionally simulating the core dynamics. For the first test, we
observe that the proposition that banding is governed by
an underlying Rayleigh-like core instability indicates that
in mixtures with fewer large particles, the valleys in the
core should be able to absorb a higher fraction of large par-
ticles, thus accentuating banding. Contrariwise, mixtures
with increased large particle concentrations should inhibit
banding. Indeed, in separate experiments we found (1)
that non-banding systems (e.g. the 6 cm cylinder charged
with the blend of 3 mm and 0.8 mm particles and rotated
at 10 rpm) band when the large particle concentration
is reduced to 30%, and (2) that banding is suppressed
when the large particle concentration is increased to 70%
in mixtures that otherwise band (e.g. 1.6 mm and 0.6 mm
particles, again in the 6 cm cylinder rotated at 10 rpm).

For the second test, we seek to partially disentangle the
mechanism of banding by exploring the extent to which
the apparent instability of the core is dominated by large
versus small particle dynamics. A priori, it seems equally
plausible that the core could expand locally due to an
intrinsic (yet to be defined) transverse instability of the
core itself, or that the core could be locally deformed by
the dynamics (also to be clarified) of the larger species. To



provide some insight into this issue, we have performed an
additional set of experiments in which we used glass par-
ticles coated with a dye that rendered the particles 20%
more dense than before. To the best of our observations,
the heavier particles do not flow or interact any differently
than the lighter particles, and the sole observable differ-
ence between the particles is the density of the dye. These
experiments were intended to investigate the possibility
that by increasing the density, and hence the inertia, of
the larger particles we would increase their tendency to
displace the core [15], thereby enhancing the development
of axial bands. This hypothesis is evaluated by comparing
50-50 blends of 1.6 mm and 0.8 mm particles first with
identical density beads and second with 1.6 mm particles
that are 20% more dense than the 0.8 mm particles. In
these experiments, we found that no bands are apparent
when rotated in the 5 cm cylinder at 10 rpm, but when the
same experiment is run with the denser 1.6 mm particles,
bands do form.

From these two tests, we conclude that available evi-
dence supports the proposition that axial banding is the
overt expression of an underlying transverse instability in
the radially segregated core formed during granular tum-
bling. Additionally, two pieces of evidence presented in
this letter suggest that this instability is mediated by the
inertia of the larger species. First, axial bands appear only
when the ratio, ¢, of cylinder diameter to average particle
size is large (Fig. 2). As § grows, each particle under-
goes more collisions while in the flowing cascade, and
thus the number of opportunities for inertia-dominated
deformation of the core could be expected to increase
with 6. Second, non-banding mixtures tend to band at
higher rotation speeds (Fig. 1f), which is associated with
greater momentum transfer during collisions. Since, as we
have described, large particles predominate at the surface
early in the segregation evolution, the tendency to band
with increased speed or large particle density indicates
that the momentum of the larger species mediates core
deformation.

Third, to investigate whether a Raleigh-like core insta-
bility of a granular core can be expected from known Phys-
ics and to understand the putative instability’s role on
banding and cylinder scale, we construct a numerical sim-
ulation in which we track the interface between the core
of fines and the surrounding coarse particles. The approx-
imations intrinsic to tracking only the core interface per-
mits us both to study the interfacial dynamics of interest
and to achieve a considerable computational advantage
over particle-dynamic or other simulations that attempt to
track every particle. To devise the simulation, we observe
that what is known of the core instability is as follows.

(1) The transverse bands form after a well defined, radi-
ally segregated, core of fines assembles. Therefore we
begin by defining a uniformly defined set of marker
points distributed on the surface of a cylindrical core
of mean dimensionless diameter D, with random per-
turbations initially added to their radial positions to
mimic granular variability.

Transport in the rolling regime can be accurately mod-
eled by assuming that material above a shear band
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flows nearly parallel to the granular free surface, while
beneath the band material rotates nearly as a solid
body [13,16,17]. This model, originally applied to tum-
bling of monodisperse blends, applies also to mate-
rial in the core of a polydisperse blend — it too must
rotate with the cylinder and it too must flow when
it exceeds some internal slip angle. The velocities in
the core will not in general coincide with those out-
side, but nevertheless this approximation should (and
is experimentally seen through the sidewalls) describe
the core flow. Algorithmically, we produce this flow by
rotating all interface points steadily counter-clockwise
as a solid body at angular speed, w, and additionally
translating points above a fixed ‘slip line’ parallel to
that line. For convenience, we use a Cartesian coor-
dinate system inclined at the angle of repose of the
free surface, so that the slip line (i.e. the direction of
cascading flow) is in the Z-direction.

In the cascading layer, flow of coarse particles out-
side the core is faster than flow of fines inside. This is
observed experimentally [18] in tumbling blenders,
and to account for this behavior, we assume that
the core interface accelerates in the cascading region
whenever the radius exceeds the initial core radius. To
generate the acceleration, we add a velocity, Av - X, to
the velocity of interfacial elements in the forward half
of the cascading layer, where Av = —vdw R®. We
simplify the acceleration of the core in the cascad-
ing layer by only adding this velocity to the forward
half of the layer for two reasons: first, the precise na-
ture of this acceleration is not known and is problem-
atic to measure properly, and second this approximate
method is computational efficient and simple to pro-
gram. In the results displayed here we choose v, = «
= 2 to represent the acceleration of smaller core par-
ticles by larger, faster moving, particles outside the
core. Other values of these coefficients would work as
well: in comparison simulations we have found that for
significantly smaller v, or «, banding never appears,
however provided v, and « are sufficiently large to
deform the core faster than the interface is normalized
and smoothed (described below), a transition between
banding and non-banding states is easily observed.
Fines always return to the core, and so neglecting
attrition and dilatency, the mass of fines within the
core interface is conserved. This essentially Archi-
medean displacement is approximated in our simu-
lation by explicitly conserving volume of the core, by
two means. Locally the simulation volume is normal-
ized by equally increasing (decreasing) the radii of
the nearest neighbors of any point whose radius is
moved inward (outward) as compared with its prior
radial position. This is done so as to uniformly redis-
tribute the volume to exactly compensate for any
inward (outward) local displacement. At the two end
boundaries of the core, volume is still conserved in
the same way, but using 3 instead of 4 nearest neigh-
bors. No other boundary condition is imposed. Glob-
ally, the simulation is normalized by computing the
total, naively integrated, volume enclosed in the dis-
cretized interface and increasing or decreasing all radii
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Fig. 3. Onset of banding seen in simulation modeling core
interface described in text. Above the onset curve, w- R'"%% =
0.09- (r* = 0.988) banding is reproducibly seen, below it band-
ing does not develop. Error bars on data points are the range of
data from multiple computational trials: above the upper error
bar, banding always occurs and below the lower bar it is never
seen. Inset shows a typical banded outcome state: banding is
determined to occur if the maximum diameter, D,y exceeds
twice the mean diameter, D.. The gray plane indicates the
shear plane below which the core only rotates as a solid body;
above this plane the core rotates and translates as described
in text

at every gridpoint by the same factor so as to main-
tain the global volume constant. Effectively, the local
and global volumetric compensations act to redistrib-
ute the core interface so that when a region is pushed
inward, neighbors move outward and the core as a
whole expands to maintain a fixed total core vol-
ume. This is done ‘naively’, meaning in proportion
to the radius alone, neglecting curvatures, proximities
of neighbors, etc. using the approximation, Volume =
2[R;;2AVA z/2], where R;; are the interfacial radii at
location ¥;, z;, and AY and Az are the initial azimuthal
and axial marker separations.

Finally, the surface is smoothed by averaging every
grid point radius over its 5 nearest neighbors in the sim-
plest possible manner: this is not essential, but it limits
the amplitudes of small wavelength fluctuations.

The simulation that tracks the core interface (available
at http://coewww.rutgers.edu/~shinbrot/Banding/index.
html) produces a transverse banding instability with a
transition that parallels that seen in our experiments. Re-
sults in the banding state are summarized in Fig. 3. In
the inset, a typical simulation outcome is shown: here the
curved surface is the core interface after 100 computa-
tional time units with parameter values as indicated in
the figure caption. The dark plane indicates the slip plane
above which the interface gains an additional velocity as
described above.

In the main figure, we plot the onset of banding: above
the curve shown, banding is reproducibly seen and below

it banding is absent. Bands are determined to occur if the
largest diameter (D, in the inset) reaches twice the initial
cylindrical core diameter after a fixed amount of time (the
same 100 time units whose outcome is shown in the inset).
Qualitatively, this curve agrees with the results described
in Fig. 1: at small scales and low rotation speeds, band-
ing is suppressed, while increasing the speed or the scale
reproducibly produces banding.

The underlying assumption here is that banding is the
overt expression of sufficiently large Rayleigh-like bands,
and in this interface tracking model the banding instabil-
ity is generated by a competition between acceleration of
the topmost core particles by faster moving coarse parti-
cles and the assumed conservation of the total core vol-
ume. Effectively, small bulges in the core interface get
stretched by the acceleration imposed by observation (3)
above each time they visit the cascading surface. As the
bulges grow, material to fill the bulges comes from nearby
regions of the core, according to observation (4). In this
way, accompanying each bulge is a nearby valley, and the
cascading flow stretches both bulges and valleys around
the circumference of the core to produce the observed
bands.

Experimentally, the growth of bands is limited by dis-
persion, so that when the rate of growth of bulges (due to
acceleration by faster moving particles) exceeds the rate
of dispersion (due to outward propagation of disturbances
required by volume conservation), then the bulges can
grow until they emerge at the surface as bands. The rate
of growth of a radial disturbance is Av = —v,w Dg, while
the speed of dispersion due to volume conservation is
U = d/7, where d and 7 are the computational grid spac-
ing and timestep respectively. Taking d = 7D /N for N
markers per core circumference, we obtain the estimate
that onset of banding should occur when | Av |> U, or
wD® ™' > 2w /N7 v,. Since our simulations use a = 2, we
obtain an expected w D¢ = constant onset curve, which
is to be compared with the best fit to the data shown
in Figure 3: w-R'%% = 0.09. Note that this quantitative
transition curve is based on the choice of «. This choice
in turn is nearly arbitrary, as it merely defines a rate of
acceleration with radius — provided that this acceleration
is sufficient to overcome dispersive smoothing, bands will
inevitably emerge. Therefore there is no reason to expect
banding onset to be quantitatively governed by this par-
ticular simple onset equation; however the qualitative on-
set behavior displayed in Fig. 3 should hold provided that
VOwTDgfl >1.

This model tells us three things then. First, non-
banding cores can be made to band if the rotation speed,
w, or the system size, D¢, is increased sufficiently. This
prediction is bounded by the applicability of the assump-
tions made: in particular they apply in the rolling regime
where the cylinder free surface is nearly flat. Second, the
core diameter, D¢, is assumed to be dimensionless, and
the nature of the competition leading to the instability
suggests that the relevant scale size — indeed the only
distance scale present — by which D¢ should be nondi-
mensionalized is d, the micro-scale dimension at which
dispersion takes place. It seems reasonable to set D. ~ D
and d ~ dgyg, and in this case the simulation accords with



the experimental finding that the scale of banding onset
should be set by the ratio, 8, of cylinder (or core) size
to particle (or dispersion) length. Third, the simulation
reveals a hitherto unreported finding deserving of more
careful experimental scrutiny. That is, because the Ray-
leigh-like instability is generated by a growth of bulges,
in simulations far from onset, banding is often preceded
by an azimuthally asymmetric bulge that eventually dis-
perses around the core circumference. This asymmetry
should be experimentally observable as intermittent pro-
trusions of the core to the surface in axial locations where
bands subsequently develop.

In conclusion, although the prevailing model for axial
band development emphasizes differences in the dynamic
angle of repose (¢) with variations in axial particle concen-
trations, it seems important to stress that these differences
can arise only after radial concentration variations have
already brought small particles back to the surface follow-
ing radial segregation. A complete understanding of the
evolution and mechanism of band formation thus demands
more comprehensive study in the future of the initiation
and nature of the Rayleigh-like instability of the radially
segregated core. Our results suggest two lessons in this
respect. First, this instability seems to be most strongly
controlled by inertially-dominated deformation of the core
by the larger species; this is not the only conceivable expla-
nation for the effects seen, but it seems consistent with the
available data. Second, more broadly speaking, our results
underscore the importance of considerations of scale in
granular studies. Unlike simple fluids, granular dynam-
ics are not conducive to description using scale-invariant
dimensionless groups analogous, for example, to Reynolds
or Taylor numbers, and consequently the implications and
mechanisms underlying granular dynamics seem unlikely
to be fully understood in the future without careful anal-
ysis of consequences of scale.
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