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Abstract A cellular automata model is used to sim-
ulate a variety of granular chute flows. The model is
tested against several case studies: flow down a chute,
flow past an obstacle, chute flow in which complex,
counter-rotating vortices result in streamwise surface
stripes and flow near a boundary. The model successfully
reproduces experimental observations in all of these
cases. These results lead us to propose that simple, rule-
based, models such as this can improve our detailed
understanding of dynamics and flow within an opaque
granular bed.
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1 Introduction

Granular flows are an important part of many industrial
and geophysical processes [1,2]. Even though granu-
lar flows are broadly important, the mechanistic under-
standing of their behaviors is limited. These behaviors
are often complex and difficult to predict, and although
good models have been produced for extremes of flow
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ranging from entirely quasi-static [3–5] to entirely rapid
[6,7], no reliable model spanning this range exists.

In this paper, we attempt to elucidate some of the
qualitative rules of behavior that apply to granular flows
ranging from static to freely flowing. We do so by focus-
ing on a single archetypal geometry: flow down an
inclined plane. This geometry is widely used in practical
transport— for example in mining and manufacturing—
and is seen in geological avalanching flows [8,9].

A promising development in understanding these
static-flow transitions in granular beds was introduced
in 1994 by a collaboration of authors with the acro-
nym: BCRE [10]. The BCRE model defines an inter-
face between a flowing layer of grains and a solidified
bed beneath, and permits the interface to move up or
down so as to account for material transfer between the
flowing and static regions. The BCRE model has great
potential to permit the future analysis of flow transi-
tions, but in its present form is limited insofar as it does
not predict the rich variety of behaviors seen in flowing
granular beds. As an example of this variety, Savage, in
1979, examined the flow of glass beads in chutes with
both rough and smooth surfaces [11], and reported a
transverse circulatory flow (cf. Fig. 5b) that appeared
when surfaces were roughened, but were not present
using smooth surfaces. Thus Savage introduced the idea
that there is apparently an internal flow within the gran-
ular bed that can be provoked by external effects such
as roughening. It is difficult to incorporate such com-
plex internal flows within a formalism such as BCRE,
in which the flowing layer’s dynamics are prescribed by
simple kinetic considerations.

More recently, the understanding of complex internal
flows has been advanced by experiments and analysis by
Forterre and Pouliquen [12], who studied longitudinal
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and other vortices that appear in wide, rough-bottomed
chutes. These vortices are orientated parallel to the mean
flow direction and transport grains between the base of
the chute and the free surface. Forterre and Pouliquen
proposed that the rough surface of the chute caused
particles near the bottom of the flow to be agitated by
frequent collisions, and thereby to generate an increased
local granular temperature and a decreased local den-
sity. Using kinetic theory modeling, Forterre and
Pouliquen [13] further showed that chute flow on rough
bottoms could indeed become unstable to transverse
perturbations and would produce counter-rotating
vortices.

In this paper, we seek to use a cellular automata
model to capture the spirit of BCRE, which defines tran-
sitions between a flowing surface layer and an underly-
ing static bed so that complex chute flows—including
those with boundary instabilities—can be simulated.

2 Cellular automata for free surface granular flows

Cellular automata (CA) models are based on simple
rules that govern the interactions of neighboring cells.
These models have been applied to a variety of complex
systems including those involved in turbulence, combus-
tion, and bacterial growth [14,15]. In the granular flow
literature, cellular automata have also had a long history,
including applications to avalanches [16,17], sand pile
creation [18], jamming [19], flow from a hopper [20,21],
the segregation of particles in rotating drums [22,23],
and other problems. Examples of simple CA models
for both flow from a hopper and segregation in a rotat-
ing horizontal drum have been given by Savage [24].
As stated by Baxter and Behringer [20], cellular auto-
mata models have important advantages over the more
widely used continuous and discrete element methods.
Continuous models are limited to systems with both sim-
ple geometries and spherical particles. The constitutive
relations for continuous models, which are necessary
for accurate simulations, are still being developed. As
for discrete element methods, they are limited by the
computational cost of tracking large numbers of parti-
cles. Recent work by Bazant (2006) has tried to address
the computational limitations of DEM while still cap-
turing the important physics through a “spot model”
[25]. A review of the many methods for modeling gran-
ular materials was written by Herrmann and Luding
[26]. While there are limits to the predictive capabilities
of CA models, they are much faster than alternatives,
allowing larger and more complex systems to be studied.

In this section, we describe a CA that is motivated by
the BCRE model, which permits an interface between

a surface flowing layer of grains and a solidified bed
beneath to move up or down so as to account for material
transfer between flowing and static regions. Correspond-
ingly, we construct our CA by permitting ‘material’
above an interface to flow downhill, and constraining
material beneath the interface to remain fixed in place.
The interface itself evolves dynamically according to
prescribed rules—essentially, if the free surface of the
simulated granular bed is steep, the interface will sub-
merge (causing more material to flow), until the sur-
face slope lessens, at which point the interface will rise
(reducing or even halting the flow).

In detail, the chute is modeled as a discrete grid
of points in X and Y, each with a continuous height,
Z(X,Y). Flow of material is simulated by transferring a
quantity � Z(X,Y) in a downhill direction, where down-
hill is determined by a calculation of the gradient of Z.
The gradient is calculated in the X-direction at the grid
locations (Xi, Yj) so that it always points downhill:

∇X
i,j = (

Zi,j − Zi−1,j
)

if Zi−1,j < Zi,j, or
(1a)

∇X
i,j = (

Zi,j − Zi+1,j
)

if Zi+1,j < Zi,j.

Similarly in the Y-direction:

∇Y
i,j = (

Zi,j − Zi,j−1
)

if Zi,j−1 < Zi,j, or
(1b)

∇Y
i,j = (

Zi,j − Zi,j+1
)

if Zi,j+1 < Zi,j.

If (Xi, Yj) is a local maximum, the larger slope is chosen;
if it is a local minimum or if both slopes happen to be
the same, one is chosen at random.

At each time step an amount of height, �Z, propor-
tional to the slope is removed from a point and the same
�Z is added to the height of another point downhill a
distance, again, proportional to the slope. In this way, the
CA explicitly conserves volume: every quantity of mate-
rial removed from one location is deposited in another,
downhill, location:

Zi,j → Zi,j − α
(
∇X

i,j + ∇Y
i,j

)
and

(2)
Zi+kX ,j+kY → Zi+kX ,j+kY + α

(
∇X

i,j + ∇Y
i,j

)
.

The distances, kX and kY , at which material is depos-
ited are calculated to again be proportional to the local
gradient:

kX = kX
i,j = int

(
β∇X

i,j

)
,

(3)
kY = kY

i,j = int
(
β∇Y

i,j

)
,

In these equations, α and β are constants: α defines how
thick the flowing layer will be, and β defines how far it
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Fig. 1 Schematic of the flow of height in the CA model. The
amount of height moved downhill and the distance that it is moved
both depend on the slope, ∇X . Here the case for the calculation
in the x-direction is shown; a similar process is used for flow in the
y-direction

will travel per unit time (i.e. its velocity). A schematic
of this process is shown in Fig. 1.

We note that kX and kY are necessarily integers, since
the model surface is only defined at discrete X and Y
gridpoints, so if kX or kY is less than the grid spac-
ing, no material will be transported in the correspond-
ing direction. Thus for free the simulation provides an
angle of repose, or gradient, below which flow will stop:
this repose angle is defined such that whenever the total
slope ∇X

i,j + ∇Y
i,j decreases below 1/β, flow stops. This is

illustrated in Fig. 2, where we show the outcome of a sim-
ulation beginning with a sum of 5 random Fourier terms
(i.e. sinusoidal shapes of random amplitude) in X and Y
directions. Initially, some surface gradients, ∇, exceeded
the angle of repose specified above, and so material (i.e.
surface height) was transported to fill valleys downhill
until the angle of repose was no longer exceeded. Con-
sequently, in the histogram shown beneath the surface
plot in Fig. 2, surface gradients reach a maximum critical
amplitude; slopes below this amplitude are also present
in valleys or near peaks. Parameter values used in this
example are given in the figure caption.

In summary, this model prescribes simple flow in the
spirit of the BCRE model: material beneath an interface

(defined by Zi,j−α
(
∇X

i,j + ∇Y
i,j

)
) is solid-like, while mate-

rial above the interface travels with velocity int
(
β∇i,j

)

per unit time. The model is easily embellished by includ-
ing terms to simulate diffusive, viscous, boundary, and
body force effects. We describe such embellishments
next.
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Fig. 2 Top: Surface shape simulated by cellular automata code
beginning with 5 random amplitude Fourier modes in X and Y
directions. Boundary conditions are periodic in X and Y, and the
plot shown is a surface using a 50 × 50 grid, α = 0.01, β = 0.2,
and diffusion = 0.01. Bottom: Histogram of slopes for the surface
shown above

2.1 Diffusion

To include diffusive motion of particles—either due to
collisional effects in the moving layer or random wan-
dering of particles near the surface—we add white noise
of maximum amplitude δ to the gradient terms [27]. For
either stalled or well developed flows, this typically has
little effect; for near-critical flows (i.e. surfaces on the
verge of motion as prescribed by Eq. (3)), this causes
small variations similar to the motion of a single parti-
cle. These variations are observed to trigger subsequent
avalanches of either small or large extent, depending on
the states of nearby slopes [28].
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2.2 Viscosity

Viscous memory can be added to the model by retaining
a fraction of a point’s previous velocity for the next time
step. This is done by modifying Eq. (1) as follows:

∇̃X
i,j = ∇X

i,j + (1 − ν) ∇X
−i,j.

(4)
∇̃Y

i,j = ∇Y
i,j + (1 − ν) ∇Y

−i,j.

Here, ∇̃ is the gradient corrected to include viscosity,
ν, and ∇− is the slope from the previous time step.
The coefficient ν represents the effective viscosity and
is chosen on [0, 1]: for small ν, the speed increases as
the bed travels downhill, and when ν approaches 1, the
bed responds only to the current slope. These two limits
approximate the behaviors seen respectively in spherical
beads with few collisions that can continually accelerate
as they travel down a chute [29] and in small, highly dis-
sipative, grains that rapidly acquire a terminal velocity
[11].

2.3 Boundary conditions

The simplest boundary conditions that one can apply
are periodic: thus in Fig. 2, all gradients and flows that
travel off the rightmost edge of the simulation domain
are calculated to continue at the leftmost edge, and
similarly in front and back. Practical problems are not
periodic, however, and so realistic boundary conditions
are needed. Boundary conditions in granular systems
are notoriously problematic [30]. For the X-direction
boundary condition, a simple choice could be no-flux,
and this can be specified by fixing gradients transverse
to a wall to be zero, thus preventing any flow toward or
away from a boundary. On the other hand, stress-free
conditions in the cross-stream direction are approxi-
mated by reflecting any bed material leaving the domain,
say in the +X-direction, back an equal distance in
the −X-direction. The no-flux and no-stress conditions
are appropriate for many cross-stream flows, but are not
typically suitable in the streamwise direction, especially
when convective, frictional or other influences occur
near boundaries. Therefore we have included a variety
of boundary alternatives in the CA (examples of some
of these alternatives are shown in subsequent sections).

Taking Y to be the downstream coordinate, we can
apply a fixed frictional momentum flux at the walls
by decreasing the calculated slope at the wall in the
Y-direction. This changes both the quantity (from
Eq. (2)) and the speed (from Eq. (3)) at which mate-
rial travels downstream near the boundaries.

The boundary condition at the upstream and down-
stream ends of the simulation can be set for several pos-

sible geometries to approximate the conditions seen in
experiments. Thus a continual inflow can be specified by
setting the gradient in the Y-direction at the upstream
end of the geometry of interest to be a fixed positive
value. Similarly, a continual outflow can be specified at
the bottom of the chute by fixing the gradient in the
Y-direction there to be another fixed value. Alterna-
tively, free outflow can be chosen by setting the height at
the end of the computational domain to a value such that
to entire last row of the chute it will appear that the next
point is at a height lower that itself. This allows mate-
rial to fall off of a simulated chute or similar geometry
without slowing down and impeding the flow behind it.

2.4 Vortices

For boundary conditions on the underside of a gran-
ular bed, we again provide alternative formulations.
To model a smooth-bottomed surface, the slope is cal-
culated and the height is moved in the direction of
steepest downward slope as specified in Eqs. (1)–(3).
Rough-bottomed chutes, on the other hand, are rec-
ognized to produce granular “heating” (an increase in
mean fluctuational velocities) as grains collide with sur-
face asperities [12], which then leads to the formation
of three-dimensional (3D) vortices that transport high
temperature grains to the surface while submerging
lower temperature grains as the material flows downhill.
In this 2-dimensional model, 3D vortices cannot be cap-
tured. However, it is of interest to see if changes in the
governing rules in the cross-stream direction can capture
the basic features of such a circulation. In experiments, it
is observed that material circulates within adjacent vor-
tices to produce surface crests and troughs. This leads
to crests (troughs) where a pair of vortices forces mate-
rials away from (toward) the base. From the point of
view of the surface, material seems to disappear from
the troughs and to reappear at the crests. It is of interest
to add a rule to approximate this movement of material
on the surface in the cross-stream direction. This can
be accomplished by changing the signs of the gradients
defined in Eq. (1a). While we recognize that this is an
oversimplification of the mechanics of the circulatory
process, it has the virtue of capturing the qualitative
kinetics needed to provoke a cross-stream instability
in an algorithmically facile manner. Using this simple
change in one rule allows us to turn cross-stream insta-
bilities on or off. This has the effect of destabilizing
cross-flows in a manner that is similar to that seen in
experiments [12]: we discuss this case in a later section.
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2.5 Body forces

The CA that we have described can accommodate body
forces in a straightforward manner. Simple inclines can
be defined by adding a constant term to the gradient
in a prescribed direction. Thus to simulate an incline in
the Y-direction by an angle ϑ , we would add a constant
proportional to g0 = g · sin(ϑ) to Eq. (1b). Inclines can
also be modeled by setting a base height along the chute
such that a constant gradient is created in the down-
stream direction. Material then simply travels downhill
according to the algorithm already presented.

2.6 Chute inclination

To compare the angle of inclination of both the model
and experimental chute, we define a parameter φ to be
the ratio of the chute inclination to the angle at which
the flow stalls. This allows us to compare the chute incli-
nations where various phenomena are observed relative
to a common endpoint (e.g. the angle at which motion
stops) in both experiments and CA model.

3 Case studies: increasing complexity

3.1 Case 1: Flow down a smooth-bottomed incline

The simplest situation that one would want to be able
to model correctly is flow down a smooth chute without
boundaries. This is a problem that has been well stud-
ied both experimentally and analytically [31]. We begin
by examining two configurations that have previously
been studied experimentally: first, flow down a feature-
less inclined chute, and second, flow down an inclined
chute past a single triangular obstacle.

3.1.1 Case 1(a): Flow at increasing inclinations

By changing the angle of inclination in the CA model,
several states can be produced, as shown in Fig. 3. These
results have been observed using both methods
described in previous sections to produce an incline.
All other cases reported here use only the base height
to produce an incline. For small inclination angles, the
flow reaches the angle of repose and stops flowing. Once
the angle of the chute reaches a critical angle, material
begins to flow in a nearly steady fashion, with only small
height fluctuations provided by the small diffusive term
described previously; parameter values used are defined
in the figure caption.

As the effective inclination (i.e. g0) is increased, rip-
ples appear on the free surface as shown in Fig. 3b.
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Fig. 3 Surface flows as the simulated angle of a smooth inclined
chute is increased. a Smooth surface flow on a gently inclined
chute (go = 1): here disturbances have time to disperse before
additional material from uphill accumulates. b At a larger incli-
nation (go = 3), small bumps grow because material cannot flow
away downhill before new material arrives from uphill. c At still
larger inclination (go = 5), bumps grow more rapidly, and travel
upstream. In all cases, flow is from left to right, and periodic bound-
ary conditions are applied in both X and Y. To add verisimilitude,
an average inclination is added to the plot; in reality there is
a constant gradient added in the +Y-direction, but to make the
computational domain periodic, the left side of the plot is at the
same height as the right side. Parameter values used are: α = 0.1;
ν = 0.8; β = 0.5; δ = 0.1

These ripples are nearly stationary in the Y-direction,
but at still higher g0, the ripples grow and travel uphill
(i.e. to the left, in the –Y-direction). This is in agree-
ment with observations of granular flows [32], and the
mechanism for this has been long understood to be as
follows [10]. Once a small bump appears on a smooth
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Fig. 4 Shockwaves produced a experimentally and b in CA in
flow past a wedge. Experimentally and in the model, we identify
the shock as the location where the bed depth increases abruptly.
The expansion fan location is approximate. The experiments were
carried out at φ = 1.24 ± 0.01 while the simulation angle was set
to φ = 1.09 (φ is defined in section 2.6). As can be seen in both
figures, the shock waves are detached from the wedges, and the

waves between the shock and the wedge have been marked with
arrows. The experimental figure has been digitally enhanced to
accentuate the waves. The black triangle denotes the position of
the triangular wedge. The simulation was carried out on a 200 by
200 grid for 5,000 iterations with α = 0.04, β = 0.07, ν = 0.565 and
no diffusion. The inlet boundary condition was set to a constant
depth of 10

surface, material from uphill collides with the bump and
slows. When this material reaches the trailing edge of
the bump, it accelerates again under the influence of
gravity, but not before more material has been accreted
onto the leading, uphill, edge of the bump. If the mass
flow rate of grains is small enough, the slowed material
will have time to accelerate before more material arrives
from uphill: in this case, the bump will flow downhill and
diminish. On the other hand, if the incoming mass flow
is above a critical threshold, more material will arrive
from above than will be depleted from below, and the
bump will move uphill and grow. This behavior is known
to be associated with shock formation [33] and is repro-
duced in our CA model as a natural consequence of the
explicit mass conservation specified by Eq. (1) combined
with the flow models of Eqs. (1) and (3). We emphasize
that this behavior is merely an elementary consequence
of mass conservation, and does not imply that the CA
model correctly approximates momentum conservation
of granular flows. We therefore turn to more compli-
cated situations to assess the degree to which the CA
does, and at times does not, accurately reproduce real-
istic granular flows.

3.1.2 Case 1(b): Flow past an obstacle

Granular flow past obstacles has been studied using a
variety of approaches. Rericha et al. [34] studied two-
dimensional shockwaves past wedges using experiments,
molecular dynamics simulations, and a continuum

model. In that work, it was reported that shocks form
at the leading edge of the wedge and an expansion fan
forms at its base. Experimental examples of these fea-
tures can be seen in Fig. 4a. Gray et al. [35] used pyr-
amids to study supersonic avalanches around proposed
barriers to rock slides and snow avalanches. In that work,
experiments were compared with a simple hydraulic the-
ory, using both forward- and backward-facing pyramids.
Caram and Hong [36], by comparison, showed that sim-
ple random flow on a discrete lattice results in good
agreement with experiments of granular flows past an
obstacle.

In light of this pre-existing work, flow past an obstacle
seems an appropriate candidate against which to test our
CA model. Fig. 4b shows the simulated flow of material
around a triangular wedge. The flow contains both a bow
wave at the top of the wedge and an expansion fan at
the base. Similarly when a pyramidal shape was placed
into the flow, similar shockwaves to those of Gray et al.
[35] were seen.

As shown in Fig. 4b, the shock produced by the model
is detached from the wedge. Waves can also be seen
within the shock, which are marked with arrows in that
figure. To the best of our knowledge, these features have
not been reported before in the literature on free sur-
face granular flow around obstacles. However, when
experiments were performed in our laboratory, similar
detached shocks were observed, as can be seen in Fig. 4a.
These shock waves are also detached from the obstacle
and include internal waves propagating from the surface
of the obstacle.
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Fig. 5 Comparison of experimental longitudinal vortices (above)
from Forterre and Pouliquen, and model CA vortices (below).
a Picture of experimental stripes seen in a flow down a rough
bed by Forterre and Pouliquen [12]. Experimental snapshot pro-
vided by Dr. Yoël Forterre. b Stripes produced by model with
φ = 1.01 on a 141 by 100 grid with α = 0.04, β = 0.07, ν = 0.565
for 1,500 iterations. Noise in the system caused by the rough bed
was modeled using a high level of diffusion (δ = 10). Other ran-
domizing mechanisms were tested and produced similar results.

c Typical Streamwise (top) and spanwise (bottom) velocities from
CA. Solid lines denote velocities at the crests while dashed lines
denote velocities at the troughs. To produce the velocity profiles of
the simulation the change in positions was averaged at each time
step for each column of gridpoints along the longitudinal direction
of the chute at φ = 1.01. Simulations used for the velocity pro-
files were carried out on a 75 by 75 grid for 2,000 iterations while
averaging for the final 500 iterations and with α = 0.04, β = 0.07,
ν = 0.565 and δ = 10

The experimental setup was similar to that of Conway
et al. [37], consisting of an inclined acrylic sheet fed by
a metal hopper. Sand with a diameter of 200 ± 50 µm
was poured down the chute from the hopper. A wooden
wedge was used as the obstacle, and was fixed to the
center of the chute.

The detached shock wave and the waves within the
shock were only seen at transitional flow speeds. The
model displays subsonic behavior at low φ (below 1.08),
which is followed by this translational behavior as φ

is increased. At higher φ (above 1.13), the simulated
shockwaves are no longer detached from the wedge.
We have confirmed that this behavior is also found in
experiments. Experimentally, below roughly φ = 1.14,
the flow is subsonic; above about 1.32, the flow appears
to be supersonic (e.g. has upward traveling shocks), and
between these points, the behavior of the flow seems
similar to the transitional behavior of the CA model.

3.2 Case 2: Flow on a rough chute without sidewalls

A more complex flow recently described in wide, rough-
bottomed chutes by Forterre and Pouliquen [12] con-
sists of long streamwise undulations on the surface of
the flow. Those authors provide convincing evidence
that the patterns they observe, which they refer to as

longitudinal vortices, are created by granular heating at
the rough surface. As the bed of grains travels down
the chute, the velocities of those grains near the rough
surface are randomized, leading to an increase in the
granular temperature and a decrease in its density. This
leads to a density inversion, in which a dense region
sits on top of a less dense layer. This situation is unsta-
ble and causes the creation of longitudinal vortices. In
order to model these three-dimensional vortices, the CA
requires a similar unstable configuration. As described
previously, this is produced by changing the sign of the
gradient in Eq. (1a).

When many vortices are nucleated on the chute at
the same time, they produce straight regularly spaced
stripes. This nucleation can be accomplished by adding
a random factor to the velocities of the flowing height
for a number of iterations. This is similar to the random-
izing effect of a rough-bottomed chute. Indeed, add-
ing a random factor to the minimum chute height, or
a random entrance boundary condition has a similar
effect. The surface shapes thus produced are shown in
Fig. 5, and seem to outwardly resemble the longitudinal
vortices reported by Forterre and Pouliquen [12].

The velocity profiles of the experiments and model
can be compared in greater detail. By averaging the
distance material travels every timestep along each
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streamwise column of grid points, a velocity profile can
be obtained. Like the velocity profile reported by For-
terre and Pouliquen, the streamwise velocity obtained
from our CA model is slowest in the crests of the vortices
and fastest in the troughs (see Fig. 5c). The velocity pro-
files are also similar in the cross-stream direction. As one
expects for a vortical flow, the spanwise velocity vanishes
at extrema of streamwise velocities. However, the direc-
tion of the flow is reversed in the CA model as a con-
sequence of the algorithmic approximation, described
previously, by which we generated the vortical insta-
bility. In experiments, material surfaces on the crests
and is transported to the troughs where it is submerged
and transferred back to the crests. In the CA model,
this transport is projected onto a two-dimensional flow.
Material is conveyed to the crests where it “jumps” and
is carried to the troughs. This leads to a reversal in the
directions of the velocity in the cross-stream direction.

3.3 Case 3: Flow on a smooth chute with rough
sidewalls

More complex three-dimensional surface waves have
been reported in inclined channels near frictional
boundaries [37]. As shown in Fig. 6a, a granular bed
flowing on a smooth surface with roughened sidewalls
develops chevron-shaped free surface waves. Chevrons
are seen experimentally at chute inclinations between
24◦ and 32◦. These may constitute an analogy with fluid
boundary layer flows, in which phenomena such as hair-
pin vortices develop near boundaries, signifying the
onset of turbulence [38].

These patterns provide another test of the CA model’s
ability to simulate instabilities. Like the longitudinal vor-
tices, the instabilities must be nucleated: in this case they
are nucleated at the wall of the chute by creating distur-
bances in the amount of material near the wall. A no-
slip condition is also set at the edge of the chute. These
disturbances perturb the unstable bed and lead to the
formation of vortices that behave, at least qualitatively,
in much the same way as experimentally observed chev-
rons, as can be seen in Fig. 6b.

It has been proposed [37] that granular heating occurs
at the walls and this creates vortices. The original chev-
ron experiments [37] also reported streamwise circu-
latory flow in which grains beneath the surface flow
away from the walls. We point out that the source of the
orientation of experimental chevrons remains unclear.
That is, if a vortical disturbance similar to that seen
in Fig. 6 were produced near the sidewalls of a chute,
one would naively expect any incipient vortices to be
dragged downhill by the faster flow nearer the chute

Fig. 6 Comparison of experimental and model chevrons.
a Experimentally observed chevrons for φ = 1.04 ± 0.01. b Chev-
rons produced in model for φ = 1.05 with no slip boundary con-
ditions. The simulation was performed with a gridsize of 310 by
200 for 500 iterations. Here α = 0.04, β = 0.07, ν = 0.565, with
no diffusion. The inlet boundary condition was set to a constant
height of 10 while the depth of the bed was set to 50 for the initial
condition except for three initially reduced height sections along
each wall to perturb the bed

center. This would produce downward, V-shaped, chev-
rons, rather than the upward, �-shaped, ones that actu-
ally appear. It is therefore somewhat surprising that CA
reproduces the correct chevron orientation, against sim-
ple heuristic expectations.

The dynamic behavior of the chevrons is at least qual-
itatively reproduced in the simulations. It was observed
that both the angle of the chevron to the wall decreased
over time and the distance between each chevron and
the edge of the chute increased over time. The ultimate
result of these combined effects is that convection rolls
begin close to the side of the chute, at a large angle,
and move away from the wall, while approaching a par-
allel orientation to the wall. This behavior has been
observed in both simulations and experiments. A com-
parison between time-lapse snapshots from both simu-
lations and experiments is shown in Fig. 7.

4 Other phenomena

This cellular automata model also seems to recreate
other patterns observed in experiments. Forterre and
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Fig. 7 Chevron angle change
in both experiments and
model: elapsed time is from
top to bottom. a Time
progression of a chevron from
computational simulations at
7,500, 12,300 and 17,300
iterations. The angle of the
chevron with the edge of the
chute (dashed lines) is 9.5◦,
6.0◦, and 2.8◦± 0.3◦
respectively. Here φ = 1.01,
α = 0.04, β = 0.07 and
ν = 0.565. b Experimental
chevron at 1.3, 1.93, and 2.8 s
with φ = 1.06 ± 0.01. The
chevron’s angle with the wall
is 7.3◦, 5.0◦ and 3.8◦ ± 0.3◦,
respectively. Cross-hatched
areas indicate locations of the
side-wall in both simulations
and experiments

Fig. 8 Other phenomena: model scales. Both the experimental
scales and these patterns are created at high chute angles. The
experiments were reported at θ=52◦ (see [13, Fig. 13]) whereas
the model produced these features at φ = 1.16. Here simulations
were carried out on a 75 by 75 grid with α = 0.04, β = 0.07,
ν = 0.565, and no diffusion

Pouliquen [13] have reported “scales” which appear
in rough-bottomed chutes at high angles (52◦). Similar
structures form at high chute angles in the model. There
is not a great deal of information available on these
experimental structures. However, in both experiment
and simulation, the structures tend to align themselves
in both a streamwise and cross-stream lattice as can be
seen in Fig. 8.

5 Conclusions

A very simple two-dimensional cellular automata model
has been created to simulate the flow of granular materi-
als in a chute. These simulations are limited by the two-
dimensional nature of the calculations and a difficulty
in determining a priori values for the physical param-

eters used. For example, the application of too much
dissipation can lead to a state with no instabilities or to
a frozen state. Too little dissipation results in patterns
persisting in the model that would otherwise die out, or
in the entire flow becoming unstable. Also, since the CA
only models the 2D surface, subsurface flows, of gran-
ular materials cannot be examined. For example, the
velocity profile of material below the surface cannot be
captured. Thus the model cannot distinguish between
flows down inclined planes—where the entire bed is in
motion — and flows down piles of grains—where only
the uppermost layers of grains are in motion.

Flow around obstacles was modeled and both sub-
and super-sonic behaviors are qualitatively reproduced.
A transitional region for a flowing free surface was
observed for the first time in the model, and behaviors
in this regime were qualitatively verified experimentally.
This region is characterized by a detached bow wave
within which other waves propagate from the surface
of the obstacle. At higher inclination angles, near the
upper end of the transition region, the model repro-
duces unstable ‘scales’ similar to those reported experi-
mentally [13].

Regular patterned flow instabilities were also mod-
eled. If the bed is disturbed uniformly, striped patterns
are created which appear similar to the longitudinal vor-
tices reported by Forterre and Pouliquen [12]. When
the velocity profiles of the model and experiments are
compared, similar qualitative trends can be seen. The
velocity of material is slowest at the crests and fastest in
the troughs [39] in the downstream direction while the
velocity profile for the cross-stream direction is reversed
for the model as compared with experiments.
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Chevrons, another pattern created by unstable flow,
are also examined. When disturbances are created near
walls with a no-slip boundary condition, waves are cre-
ated that are oriented against the flow. The dynamic
behavior of both the experimental and model chevrons
are similar.

While this simple model produces features that
appear similar to some of the experimental patterns seen
in chute flow, there are some important shortcomings
that should be emphasized. Foremost, the CA model is
only an approximate treatment and cannot be used to
make accurate quantitative predictions using physical
parameter values. Additionally, the model only provides
a two-dimensional representation of three-dimensional
phenomena. More careful scrutiny reveals additional
differences between experiment and simulation. For
example, as can be seen in Fig. 7, the chevrons in the
model have sharper peaks than in experiments. This is
due to issues associated with the choice of a value for dis-
sipation in the model. This problem also plays a role in
the long-term behavior of the model chevrons. In exper-
iments, as the chevrons move toward the center of the
chute, they transport material and deposit it at the point
at which they are subsumed. Due to the difficulties in
choosing an accurate value for the dissipation, at higher
inclination angles, the vortices do not die out as they
leave the edge of the chute, but instead join together
and persist for long times.

In further detail still, experimentally two types of
chevrons have been observed. Referred to as A and B
chevrons [37], they differ in size and angle with respect
to the wall. In the model, only one type of chevron is
created. The mechanism that produces the A and B
chevrons in the experiments at different chute angles
is evidently not included in the cellular automata rules
chosen for this model. Also, in experiments, chevrons
and the longitudinal vortices of Pouliquen and Forterre
are seen at very different chute angles. The chevrons
are only seen for very low angles (about 25◦), while the
longitudinal vortices are seen at higher angles (about
40◦) [12]. This discrepancy is not surprising consider-
ing that the model produces vortices regardless of the
granular temperature, whereas in the experiments, it is
the difference in granular temperature that drives the
vortices.

For each flow feature modeled, boundary conditions
or flow rules must be adjusted, especially when chang-
ing from smooth flow to the unstable flow of the den-
sity inversion patterns. Ideally a model with one set of
flow rules would be able to capture all of these behav-
iors. Perhaps a three dimensional CA model may have
more success in that regard. Nevertheless, this simple
2D model seems to capture qualitative experimental

features quickly and efficiently and we hope may con-
tribute to improved understanding of boundary condi-
tions and dissipation rates which are appropriate for
the wide range of granular behaviors currently being
explored.
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